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The Propagation Characteristics of Signal
Lines in a Mesh-Plane Environment

BARRY J. RUBIN, MEMBER, IEEE

Abstract —This paper investigates the propagation characteristics of
signal lines situated between a pair of mesh reference planes in a homoge-
neous dielectric. These mesh reference planes, which form the heart of
high-performance multichip modules, provide a transmission-line environ-
ment for the signals carried between integrated circuit chips.

A numerical solution that employs a set of rooftop functions to represent
the current density is developed and used to find the propagation velocity
and characteristic impedance in mesh-plane structures where the conduc-
tors have zero thickness and finite sheet resistance. The telegraphist’s
equations are shown to apply, and are used to find the capacitance and
inductance matrices in coupled line configurations. The near- and far-end
crosstalk are calculated when the coupled lines are on the same, and on
opposite, sides of a mesh plane. The presence of conductors which run in a
direction orthogonal to the signal lines, whether as an array of crossing
signal lines or as part of the mesh planes, is shown to significantly affect
only the capacitive parameters. The influence of such orthogonal lines on
the propagation velocity, characteristic impedance, and crosstalk are given,
and a detailed plot clearly indicates the circulating current flow in these
lines.

I. INTRODUCTION

RANSMISSION LINES in the form of signal lines

embedded in a dielectric and sandwiched between
conductive reference planes are used in high-performance
computers to carry signals between integrated circuit chips.
A compact multichip carrier, or module, may be con-
structed by stacking such conductor-dielectric sandwiches,
where the reference planes and dielectric are perforated so
that signal lines can be connected to the chips at the
module’s top surface, to pins on the module’s surface, or to
signal lines located on other layers. A module that can hold
100 chips has been described in [1].

A section of such a module is shown in Fig. 1. Here, a
signal line situated between a pair of perforated (mesh)
reference planes is connected to another signal line through
a conductive element called a via. Generally, each signal
layer, which consists of lines running in only one direction,
is accompanied by a second layer having lines oriented in
the orthogonal direction. At least one pair of signal layers
is placed between mesh planes, though crosstalk and im-
pedance constraints may limit this number to two.

A search of the literature reveals no comprehensive
analysis of the above structure, though propagation along a
pair of wire meshes [2] and the effect of orthogonal, or
crossing, lines on signal lines situated between perfect
ground planes [3] have been investigated. In this paper, we

Manuscript received August 30, 1983; revised January 16, 1984.
The author is with the General Technology Division of the IBM
Corporation, Hopewell Junction, NY 12533.

y-Signal Line

Reference
Planes

“~—— x-Signal Line

Fig. 1. Section of multi-chip module showing reference planes, and

signal lines interconnected through a via.

extend the analysis presented in [4], where guided wave
solutions are found for signal lines situated above one
periodically perforated ground plane to include a second
such plane and an array of orthogonal signal lines. The
propagation velocity, characteristic impedance, and signal-
line crosstalk are calculated, and numerical results pre-
sented. The effect of crossing signal lines is discussed in
detail.

II. SoLuTION TECHNIQUE

The structure considered is shown in Fig. 2, where a pair
of signal layers is situated between two mesh planes. The
conductors have zero thickness and finite sheet resistance
R, >0, and the supporting medium, which extends
throughout all space, has relative dielectric constant ¢,.. The
mesh planes, formed from intersecting conductive strips of
widths w, and w,, have periodicities d; and d,,, in the x
and y directions, respectively, and are located at z =0 and
z=h;. The x- and y-signal lines have widths w, and w,,
respectively, and are situated at z =4, and z=4,. Con-
sistent with typical computer packages, the signal lines and
mesh planes are so aligned that their projections on the
plane z =0 coincide. The x- and y-lines initially are as-
sumed to be arrays with respective periodicities of d, and
d, (so the periodicities defining the entire structure are d,
and d;), but through antisymmetric excitation of the x-sig-
nal lines, the periodicity in the y direction will be removed.
In the following, £, and 7, are the wave number and the
wave impedance in the dielectric, the time dependency is
exp(jwt) where w is the angular frequency, and x is the

0018-9480,/84 /0500-0522$01.00 ©1984 IEEE



RUBIN: PROPAGATION CHARACTERISTICS OF SIGNAL LINES .
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Fig. 2. Transmission line structure’ having arrays of x- and y-signal lines
situated between a pair of mesh reference planes.

direction of propagation. The terms y-signal lines and
crossing lines will be used 1nterchangeab1y

A. Eigensolution for an Array of Szgnal Lines Above a Mesh
Plane

Reference [4] presents a solution for a structure having
- only x-signal lines and one mesh plane. The current density
J., within a suitably defined unit cell that includes both
signal line and mesh plane, is approximated as a linear
combination of rooftop functions [4]-[6] multiplied by the
factor exp(— jk,x), where k, is the propagation constant.
The transverse component of electric field E, is expressed
in terms of the current using [6], and the electnc field
boundary « condition ‘ :

E, - JR, —0 (1)

is then’ 1ntegrated along appropnate line segments on the
conductor generatlng the set of equatrons

E I ( xxaﬁ RstaB)+ Z nyaﬁ;o)

o=

B»=172""aP

( yyef Rsf;mﬁ) 0

B:l’z’...,Q

)
where I,, I, are complex current coefficients, the Z
elements are 1nf1n1te series, and P and Q are, respect1ve1y,
the number of rooftop current elements required to ap-
proximate J;, and J; . The determinantal equation associ-
ated with (2) is solved, yleldlng k. k,is then substituted

- back into (2) to give [ and thus the current dens1ty

P
Z ZyxaB+ Z
a=1

xa? ya
B. Extenszon of Single Mesh- Plane Analysis

 We find the solution associated with the structure of Frg
2 by including in the analysis the current density on the
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Fig. 3. Unit cell of mesh plane, indicating rooftop functions used to
approximate current density and 11ne intervals over which boundary
conditions are applied.

conductors located at z=h, and z = h,. In addition, we
employ rooftop functions that are not necessarily symmet-
rical along the direction of current flow. The use of such
asymmetrical rooftop functions relaxes the dependencies
between the geometrical parameters w,, w,, d;, and d, that
would otherwise result; and allows the current den51ty to be

‘ represented with fewer current elements.

The rooftop functions are shown in Fig. 3, where their
use in representing the mesh current density of a structure
where d,,, = d, is indicated. As in [4], the dots define the

centers of the rooftop functions, being omitted at redun-
dant points along the unit cell boundary, and the heavy
lines define some line segments over which (1) is integrated
to obtain (2). The use of asymmetrical rooftop functions,
however, results in a subdivision of the unit cell which is
not a uniform rectangular grid. The dimensions of the
rectangles are fixed by the parameters 7,,, T, and 7.,
which define R, (X = Xa ¥ = Va)s the x-directed rooftop
function centered at (X, Y,» Z,), and by the parameters 7,
i and T,e» Which define R ,(x — Xpig V™ Vpia) the
y-directed rooftop function centered at (Xp, 4 Vpio Zp +a)

"The resulting Z coefficients of (2) associated with the
structure of Fig. 2 are then

Zxxaﬂ 2k' anS(kxn’ uBa UB)
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where

27n 2am
k.,=k, +71— kym— Z,

Ko = (K2 = k2, = k2,.)"

S(k.r.. ) = exp (— jk, /E)]kw(p(fkT /2

and Z,,,,,o and %, are the Fourier series coefficients of
R, (x,y) and R (x,y), respectively. Though resistive
structures can be handled, in this paper we present exam-
ples only for conductors having R, = 0; the F elements of
(2), therefore, are not needed, but for reference are in-
cluded in the Appendix.

C. Application of Symmetry

The reference planes in high-performance modules are
generally interconnected directly through vias, or indirectly
through paths which may include vias, power supply pins,
decoupling capacitors, and logic circuits. These elements
serve to short the mesh planes together, precluding the
possibility of a time-varying potential difference between
the mesh planes and thus preventing the existence of a
mode corresponding to this potential difference. On the
other hand, such elements greatly complicate the analysis.

To short the mesh planes but not overly complicate the
problem, we force the x-directed current I in adjacent
x-signal lines to flow in opposite directions so by symmetry
the tangential electric field is zero along the x — z planes
midway between these lines. The unit cell, as shown in Fig,
4(a), includes two x-signal lines and has periodicity 24, in
the y direction. (This requires that d, be replaced by 24, in
(3) and its auxiliary equations.) Since the tangential electric
field is zero along the planes indicated in the figure,
perfectly conducting walls may be placed there without
disturbing the field. A reduced unit cell having periodicity
d, in the y direction may then be defined, as shown in Fig.
4(b). In fact, the structure no longer needs to be considered
as periodic in the y direction since the conducting walls
totally isolate the structure in this direction. Also observe
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Fig. 4. Transmission line structure where adjacent x-signal lines carry
current in opposite directions. (a) Section of structure showing unit cell
and planes where the tangential electric field is zero. (b) Reduced unit
cell.

Fig. 5. Isometric view of the reduced unmit cell (Fig. 4(b)) when

dy=3d,,,

that only one propagation constant is associated with this
structure. Had the mesh planes not been shorted, the unit
cell would have consisted of three nontouching conductors
(an x-signal line and two mesh planes) so that the structure
would have been a coupled transmission line possessmg
two distinct propagation constants.

Although the electric walls are necessary to short the
reference planes, they do not actually exist in the module.
To prevent these walls from 51gn1flcantly affecting the
propagation characteristics, the distance between each x-
signal line and the nearest wall must be large in compari-
son to the distance between the x-signal line and the
nearest mesh plane. For typical structures, this may be
accomplished by requiring the reduced unit cell width d, to
be several times the periodicity of the mesh in the y
direction, d,,,,.

Fig. 5 gives an isometric view of the unit cell (subse-
quently, the term unit cell will be taken to mean reduced
unit’ cell) when d, =3d,,,. The y-signal line shown in-
cluded in the figure may or may not actually be present. A
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Fig. 6. Subdivision of mesh plane suitable for unit cell of Fig. 5.

particular subdivision of this unit cell suitable for the
examples to be presented is shown in Fig. 6. The unit cell is
divided along y into uniform segments of length 7,; along x
the unit cell is divided into two equal segments of length 7,
and a third segment of length d; —w,. Though shown
explicitly only for the mesh planes, subdivisions may be
obtained for the x- and y-signal lines from their projection
onto the grid shown. The dots indicate the centers of the
rooftop functions employed in the representation of the
current density.

IIL

A characteristic impedance Z, can be defined for this
structure. Since the current and voltage are the variables
generally encountered in the analysis of computer circuits,
it is convenient to define Z, as

CHARACTERISTIC IMPEDANCE

Zy=V/I1 (4)
where V is the voltage difference between the x-signal line
and a mesh plane (generally the mesh plane at z =0), and 1
is the total x-directed current in the x-signal line, As
described in [4], ¥ can be obtained by integrating the z
component of the electric field between the signal line and
a mesh plane, though this voltage depends on the integra-
tion path because the wave is non-TEM. In typical mesh-
plane structures, however, the wave is nearly TEM and the
ambiguity in voltage so small that the utility of V is not
impaired. Modifying the analysis of [4] to include the
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Fig. 7. Configurations used in coupling analysis. (a) Unit cell for side-
by-side coupling. (b) Unit cell for, through-mesh coupling.

y-signal line and the second mesh plane, we find
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3, , is a modified form of the Kronecker delta, defined in
the Appendix, and ¢, , is a function having the triangle
dependency of the x-directed rooftop function (Fig. 3).
When adjacent x-signal lines are oppositely excited, (4) and
(5) are modified to reflect the new unit cell.

1V. Si6GNAL-LINE COUPLING AND CROSSTALK

The crosstalk between two adjacent signal lines can be
obtained by modifying the unit cell of Fig. 4(b) so that it
contains two x-signal lines, finding the associated capaci-
tance and inductance matrices, and then substituting the
appropriate matrix elements into well-known formulas for
the near- and far-end coupled noise. Since the reference
planes are meshes, not solid planes, coupling will exist
between lines located on the same, and on opposite, sides
of a mesh plane. Subsequently, two unit cells need to be
defined.
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Fig. 7(a) shows a unit cell suitable for finding the
crosstalk between horizontally adjacent signal lines (side-
by-side case). A second unit cell, suitable for finding the
crosstalk between signal lines separated by a mesh plane
(through-mesh case) is shown in Fig. 7(b). In each cell, the
x-signal lines (labeled 1 and 2) are a distance 3d,,, /2 from
the nearest electric wall. Crossing lines will be considered
only in the side-by-side structure.

The total x-directed currents in the two coupled x-signal
lines 7, and I,, and the potential differences between these
lines and the nearest mesh planes ¥; and ¥, (found through
integration of the z-directed electric ficld), are calculated
for each propagating mode associated with the structure.
As opposed to a TEM structure, where only one propaga-
tion constant (and hence only one mode) may exist, a mesh
structure having two signal lines supports two distinct
propagation constants (and hence two modes). The propor-
tion of each mode present depends upon the boundary
conditions (voltages and terminations) imposed at the ends
of the signal lines. The parameters I;, I,, V;, and V, are
then substituted into the telegraphist’s equations [7] (which
we assume and later verify to hold for our structure), which
in matrix form and expressed through phasors are

— jkiV'=— joLI'
— kLI = — juCV

SN

and C and L are the per unit length capacitance and
inductance matrices

(6a)
(6b)

where

Gy - Clz]
C= Ta
[ —Cxn C ( )
Ly, le]
L= . 7b
Ly Ly ( )

The superscript i, which may be either 1 or 2, denotes the
mode. Since two 'modes exist, (6a) represents a set of four
equations in the four unknowns L,;, L,, Ly, and L,,;
(6b) represents a set of four equations in the four un-
knowns Cyy, Cj,, Gy, and C,,. Hence, both C and L can
be obtained from (6).

From [8] and [9], the saturated near-end noise ¥, and
far-end noise V., in ideal transmission lines with pulse
excitation, may be expressed as

Vo= (Kot K,V 8a)
v=3\Bc s

1

fleuCu (Kc - KL)VS/T (Sb)

where V5 is the voltage amplitude on the active line, / is the
coupled length, 7 is the input pulse risetime, and K. and
K, are the capacitive and inductive coupling coefficients,
which may be expressed as

Kc=Cy/ VCiCr (93)
K, = L12/VL11L22 . (9b)
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Equations (8a) and (8b) apply to coupled lines which are
terminated in impedances |L,, /C,, i=1, 2. Viewing the
voltage waveform in the structure as a superposition of two
waves having distinct propagation velocities and which
repeatedly reflect (to a small degree) off the ends of the
lines [7], these equations are seen to be approximations—in
[9], such equations are stated as valid when the lines are
loosely coupled and / is nonexcessive. Actually, (8b) is
valid only when the difference in propagation delay along /
of the two modes is less than 7. A further restraint on (8),
when applied to the periodic structure considered here, is
that the input pulse not distort as it propagates— this
requires 1 /7 to be small compared to the structure’s cutoff
frequency. For typical computer modules, all the above-
mentioned constraints are satlsfled and (8) gives reason-
ably accurate results.

V. NUMERICAL RESULTS

A. Calculation of Propagation Characteristics for Two-
Mesh- Plane Structures

A number of examples are now considered. In each, the
parameters w, and w, are chosen to allow a unit cell
subdivision as shown in Fig. 6, though'the number of
intervals of length 7, along the y direction may differ from
that shown. The infinite series in (3) and (5) are truncated
after |n|= N and |m| = M, where N and M are the smallest

integers satisfying

d _d,
N>max(—x,d1 )

x

o2

10
- (10)
and both 7, and 7, are intervals as depicted in Fig. 6. This
choice for N and M guarantees that at least one period of
the highest Fourier series mode of any rooftop function
will fit into each rectangle shown in Fig. 6.

As in [4], the propagation constant k,, which appears
implicitly in the determinantal equation (2), is obtained
through a Newton search. We define the normalized propa-
gation velocity ¥ as the propagation velocity divided by the
speed of light in the dielectric. At low frequency (k.d; < 1)
in perfectly conducting structures, ¥ may be simply ex-
pressed as

b=k /k,.

In the following examples, R, =0,¢,=10 (consistent
with alumina ceramic dielectrics), k, = 0.006 mm ™!, and
the structures are such that A, = A, h, =2k, and s, = 3h.
Since R, = 0 and k.d, will be sufficiently small, k.., §, and
Z0 will be real. The characteristic impedance and voltages
in all the examples are calculated at the point along the
line bisecting the x-signal line, midway between the y-
directed conducting strips that constitute the mesh planes.
Such a choice has been found to yield the most accurate
values of the capacitance and inductance matrices. The
first example deals with the effect of the electric walls on
the propagation characteristics.
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Fig. 8. Normalized propagation velocity (9) and characteristic imped-
ance (Z,) against d, /d,,, for the structure of Fig. 2 having no crossing
lines (k,=0.006 mm~", €¢,=10, R; =0, d;=d;,,=0.5 mm, 7 =02
mm, w, = w, = 0.125 mm, 7, = 0.0625 mm, 7, = 0.03125 mm).
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Fig. 9. Normalized propagation velocity (9) and characteristic imped-
ance (Z,) against & for the structure of Fig. 5 (k,=0.006 mm™!,
€,=10, R, =0,d, = d,,, = 0.5 mm, d, =1.5 mm, w, = w, = 0.125 mm,
7, = 0.0625 mm, 7, = 0.03125 mm).

As discussed earlier, d, /d,,, must be large enough to
prevent the electric walls in the unit cell (Fig. 4(b)) from
significantly affecting the propagation characteristics. The
variation of ¥ and Z, with d, /d,,, is presented in Fig. 8 for
the structure of Fig. 2 (with no crossing lines) when w, = w,
=0.125 mm, d,=d,,, =05 mm, £ =02 mm, 7, = 0.0625
mm, and 7, = 0.03125 mm (remember that R, =0, ¢, =10,
and h, = h, h, = 2h, hy=3h). The unit cell (Fig. 5) and its
subdivision (Fig. 6), though valid for d,/d,, =3, are
appropriately modified for other values of d,/d,,. We
observe that ¥ monotonically decreases and Z, monotoni-
cally increases with d,/d,,, but both saturate around
d, /d,,, = 3. Thus, for structures having 4 about 0.2 mm,
we can expect d, /d,, =3 to be sufficient for reasonable
accuracy.

The impedance and normalized propagation velocity are
plotted against % in Fig. 9 for the structure of Fig. 5 when
d,/d,,, is fixed at 3, but with the other geometrical
parameters as given above. We observe that ¥ and Z,
increase with A over the given range, and both decrease by
about 3 percent when crossing lines (y-signal lines) are
introduced. These y-signal lines, spaced at intervals of 4,
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Fig. 10. Normalized propagation velocity (9} and characteristic imped-
ance (Z,) against k for the structure of Fig, 5 (k.=0.006 mm™!,
€,=10, R;=0, d;=d,,,=0.5 mm, d, =15 mm, w, =w, =02 mm,

7, = 0.1 mm, 7, = 0.05 mm).

y-Signal Line

*-Signal Line

Fig. 11. Current density (A/mm) in y-signal line of half the unit cell of
Fig. 5when I=0.5A (k.= 0.006 mm ' ¢,=10,R,=0,d,=d,,, = 0.5
mm, d,=1.5 mm, 2= 0.15 mm, w, = w, = 0.2 mm, 7, = 0.1 mm, 7, =
0.05 mm).

form a periodic array of capacitive discontinuities and thus
increase the capacitance of the x-signal line, lowering the
impedance and slowing the wave. Although ¥ increases
with &, apparently due to the increasing effect of the
conducting walls, when # approaches zero one would ex-
pect the wave to approach TEM and ¥ to increase to unity.
Thus, the sensitivity of © to & over the range /=0 to
h =0.15 mm may not be intuitively clear.

Fig. 10 gives ¢ and Z, against 4 for the same structure,
except w, =w, =0.2 mm, and the subdivision parameters
are 7, =0.1 mm and 7, = 0.05 mm. Consistent with wider
lines, Z, is smaller, ¥ is greater (the wave is more nearly
TEM), and the effect of crossing lines on both parameters
is greater. The current density in the y-signal line when
h =0.15 mm and the x-signal line carries a current of 0.5 A
is shown for half the unit cell in Fig. 11. As expected, the
current flows in loops to cancel the magnetic field within
the line that is produced by the mesh planes and x-signal
line. For the half unit cell shown, the current flows in the
clockwise direction, but by symmetry flows counterclock-
wise in the other half. The current flow in a mesh plane,
though for a simpler structure, is given in [4].
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TABLEI
COMPARISON OF CAPACITIVE AND INDUCTIVE PARAMETERS IN
COUPLING STRUCTURES
k,=0.006 mm~', ¢,=10, R, =0, d,=d,,,= 0.5 mm, h =02 mm,
w, = w, = 0.125 mm, 7, = 0.0625 mm, 7, = 0.03125 mm

Coupling Gonfiguration G1q C12 [ Caz Lyq Ly L9 Lo

(pt/mm) (pf/mm) {pf/mm) {pfimm] |} {nh/imm) | (nh/mm} | (nh/mm) | (nhimm)

Side-by Side* 02194 004271 05101

02161
0 2307

001837
001338
0 00899

001837
001338
0 00893

02194
0 2161
0 2307

05101
06344
05337

00427
004188
004212

001718 05357
001697 | 05554

Side-by-Side 004189 05344

Side-by-Sidet

004212 05337

Through-Mesh* 02183

02172

000700 | 000700

0 00328

0 2076 0 5095

0 5289

001718
001721

000333 0 2062

Through-Mesh

* TEM Structure
t Crossing Lines Present

In Section 1V, the telegraphist’s equations were assumed
to apply to the structures of Fig. 7(a) and (b) and were
used to obtain the C and L matrices. We now show that
this approach is valid by finding the C and L matrices
associated with structures having no y-directed conductors,
and then comparing these matrices to those obtained
through (6) for the structures having y-directed conductors.
The structures of Fig. 7(a) and (b), having no y-signal lines
or y-directed conductors in the reference planes (so the
meshes become arrays of x-directed conductors), support
purely TEM waves, so that the associated capacitance
matrices may be obtained using [10]. The inductance
matrices, since the structures are TEM, can be obtained by
inverting the C matrices and dividing the resulting matrix
elements by the square of the velocity of light in the
dielectric.,

Table I gives the elements of the L and C matrices
calculated for the structures of Fig. 7(a) and (b) as shown
and for their TEM counterparts, when £ = 0.2 mm, w, = w,
= 0.125 mm, and d, = d,,, = 0.5 mm. We expect the pres-
ence of y-directed conductors to substantially reduce the
mutual capacitances C,, and C,;, but to affect only slightly
the other parameters. We now compare ¢ach parameter
calculated for the TEM structure with the same parameter
calculated for the mesh structure.

For the side-by-side case, we observe that the mutual
inductances L,, and L,, agree to within 2.0 percent; the
self inductances L,; and L,, agree to within 4.8 percent;
C,, and C,; are substantially less, and the self capacitances
C,; and C,, slightly less for the mesh structure. Though the
changes in the self terms are in directions opposite to that
expected (when y-conductors are added to a TEM struc-
ture, Cy; and C,, should increase, while L,; and L,, should
decrease), these slight discrepancies fall within the numeri-
cal uncertainty associated with the expansion and testing
procedures employed—at the low frequencies considered
here, the rooftop current expansion results in an essentially
stepwise-constant charge distribution, and the line integral
testing (of the electric field) actually results in a point
testing of the voltage on the conductors. As shown in [11],
when constant charge patches and point testing are used in
finding the capacitance of a rectangular parallel-plate
capacitor, the values calculated (against the number of
subsections) approach the exact value from below. It is
expected, then, considering the relatively coarse subdivi-
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sion of the mesh structure (7, = 0.0625 mm, 7, = 0.03125
mm) that the self capacitances be less and the self induc-
tances (which vary inversely with the self capacitances) be
greater. This behavior is further demonstrated in the sec-
tion on numerical convergence. The mutual terms, which
depend on the current (or charge) at one conductor and the
field at another, are less affected by the particular subdivi-
sion.

In the third row of Table 1, crossing lines are considered
in the side-by-side structure. These lines, acting as capaci-
tive discontinuities, increase C;; and C,,, decrease C;, and
C,,, but insignificantly change the inductances. The entries
for the through-mesh case show excellent agreement (be-
tween the TEM and mesh structures) of the mutual induc-
tances; the mutual capacitances are substantially less in the
mesh structure, and the self terms are only slightly af-
fected, though the changes again are in a direction other
than expected. We observe that C;, # C,; and L, # L, in
the mesh structure, in apparent violation of reciprocity.
But the structure is not TEM so that the voltages used in
(6) are somewhat ambiguous, being dependent on the
integration path; therefore, reciprocity does not apply to
these parameters. The exceptionally close agreement be-
tween L), and L,,, and between C), and C,;, however,
further supports the application of the telegraphist’s equa-
tions. For the side-by-side case, the symmetry of the struc-
ture forces Ly, = Ly, and C, =C,;, C;;=C,,, and L, =
L,,. Though Table I presents results for structures having
£ =0.2 mm, calculations for # = 0.15 mm and # = 0.25 mm
show the same excellent agreement and observed trends
between the calculated parameters for the TEM and mesh
structures.

The parameters of Table I, calculated for 4 = 0.15, 0.20,
and 0.25 mm, are substituted into (8) and (9) to obtain the
normalized saturated near-end noise (¥, /¥s) and the nor-
malized far-end noise [tV /(IV)), for the side-by-side and
through-mesh structures. Line 2 is the active line and the
noise on line 1 will be determined (see Fig. 7). As shown in
Fig. 12(a), the saturated near-end noise is greater for the
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TABLE I
CONVERGENCE OF PROPAGATION VELOCITY, CHARACTERISTIC
IMPEDANCE, CAPACITANCE, AND INDUCTANCE AGAINST THE
NUMBER OF SUBDIVISIONS FOR A ONE-MESH-PLANE STRUCTURE
(NoO Y-SIGNAL LINES)
k,=0006 mm~, ¢, =10, R,=0, d;=d5,,= 0.5 mm, d,=1.5 mm,
h=02 mm, w,=w, =02 mm.

Case 5,1 Sy2 5y B Z91Q) C (pfimm) L {nh/mm)
1 2 1 30 0 98829 4204 0 2637 0 4484
2 2 1 60 0 98891 4111 0 2593 0 4382
3 2 1 %0 098913 4079 02613 0 4347
a 2 1 120 098918 40 56 0 2627 04322
5 4 3 30 098907 4197 0 2539 04473
6 4 3 60 098971 4104 0 2595 04371

side-by-side case, even when crossing lines are introduced.
The far-end noise (which is negative since K; > K), as
shown in Fig. 12(b), in both structures agree to within 20
percent. Once y-signal lines are introduced into the side-
by-side structure, however, the reduction in Cj, (and the
corresponding decrease in coupling coefficient K.) causes
the far-end noise to substantially increase, well beyond that
of either structure having no crossing lines. Though the
variation with / of the near-end noise is intuitively obvious,
the variation of the far-end noise, which depends on the
difference between K - and K, is more difficult to predict.
This is made evident by the curves in Fig. 12(b). Though
not shown, the corresponding TEM structures have
noticeably larger near-end noises (since they have larger
values of K), but no far-end noise (since K = K, ).

B. Numerical Convergence

We now investigate the convergence of the solution
technique by choosing a convenient structure, varying the
numbers of subsections and modes, and observing the
changes in 9 and Z,. The structure chosen must be simple
enough to allow at least a four times increase in the
number of subsections without leading to excessive compu-
tational cost—a suitable structure is a modified version of
that considered in Fig. 10, having only one mesh plane (at
z=0) and no y-signal lines. The corresponding unit cell
subdivision (Fig. 6) is modified so that S,; equal intervals
subdivide the x region of length w,, S,, equal intervals
subdivide the x region of length d; —w,, and S, equal
intervals subdivide the y region of length d,. The original
subdivision, then, corresponds to S,; =2, S,, =1, and S, =
30. This new subdivision scheme requires (10), the expres-
sions defining N and M, to be modified as follows:

le dl Sx2d1 )

N>rna.x( " d—w

p.o

M>2S,. (11)

Table II gives ¥ and Z; for a number of different
subdivisions. We observe, from cases 1 through 4, that
both © and Z, vary monotonically and converge as S,
increases. From cases 1 through 6, we observe that the
number of subdivisions along both x and y influence o, but
only the increase of subdivisions along y yields a signifi-
cant decrease in Z,. Also shown in the table are the
capacitance and inductance (represented by C and L),
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calculated from (6). We observe that the capacitance con-
verges from below and the inductance converges from
above as earlier speculated. The corresponding TEM struc-
ture (no y-directed conductors) has C = 0.2578 pf/mm and
L =0.4331 nh/mm. Although satisfactory for all the other
cases, M given by (11) yields incorrect values for 9, Z;, and
the current distribution in case 4. Doubling M, however,
gives the values listed in the table. From the table, the
maximum changes in © and Z; are 0.14 and 3.6 percent,
respectively. Cases 1 and 6 were repeated at high frequency
(k,=1.0 mm™"), and showed comparable rates of conver-
gence.

Next, we truncated the infinite series in (3) and (5) at
different points. We observed that doubling N in cases 1
and 5 produced changes in § and Z; of less than 0.01 and
0.04 percent, respectively. Doubling M in case 1 decreases
# by 0.02 percent and decreases Z, by 0.72 percent, while
doubling M in case 2 results in less than half the above
changes—thus, once a fine enough subdivision along y is
employed, using more modes than given by (11) yields only
minimal improvements in accuracy.

To improve the convergence, a more non-uniform subdi-
vision of the unit cell, one that employs narrow strips along
the conductor edges to better represent current crowding,
would undoubtedly give faster convergence (with respect to
the number of subsections). An efficient algorithm for
calculating the Z elements in (3), however, takes advantage
of the occurrence of elements having repeated values.
Though the total number of Z elements would be reduced,
such a non-uniform subdivision might actually increase the
number of elements having different values and, therefore,
increase the computational expense.

VL

The propagation characteristics have been calculated for
transmission line structures comsisting of signal lines
situated between a pair of mesh reference planes through
the extension of a previous analysis involving a rooftop
current approximation. The conductors have zero thick-
ness, finite sheet resistance, and the dielectric is homoge-
neous.

A number of examples were considered for perfectly
conducting structures at low frequency (k.d; <1). The
results showed that the propagation velocity is just a few
percent less than the speed of light in the dielectric, and
that an array of crossing, orthogonal lines causes the
propagation velocity and characteristic impedance to de-
crease (both by 34 percent for the structures considered).
The crosstalk between adjacent signal lines was calculated,
showing that the near-end coupled noise is greater for
signal lines sitting side-by-side than for signal lines verti-
cally adjacent but separated by a mesh plane (through-mesh
case). The far-end noises were shown to be comparable,
though the presence of crossing lines subsequently causes
the side-by-side far-end noise to approximately double.
The crosstalk, of course, is strongly dependent on the
geometrical parameters defining the structure. The pres-
ence of y-directed conductors, whether as part of the mesh

CONCLUSION
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planes or as crossing lines, significantly decreases the mut-
ual capacitance between coupled lines, but has a negligible
effect on the mutual inductances. A plot of the current
distribution on a y-signal line showed the expected loop
current flow necessary to cancel the magnetic field pro-
duced by the other conductors, giving additional support
to the solution technique.

In calculating the L and C matrices, the telegraphist’s
equations, which hold true exactly for TEM transmission
lines, were assumed to hold in the mesh-plane environ-
ment. This assumption was verified through a comparison
of parameters calculated for mesh structures and for mesh
structures devoid of y-directed conductors (so they become
TEM structures). Excellent agreement (within 5 percent)
was observed in the elements of the inductance matrix, the
parameters least sensitive to the presence of y-directed
conductors. The mutual capacitances in the mesh structure
were substantially less, as expected. Though the changes in
the self terms due to y-directed conductors in the mesh
planes were small, they were in the direction opposite to
that expected. This discrepancy, however, was attributed to
the numerical error associated with the relatively coarse
subdivision of the unit cell. The application of the tele-
graphist’s equations were further supported through the
close agreement between L, and L,;, and between C,, and
C,,; though calculated in the through-mesh structure as
independent parameters, they exhibited the near reciprocal
behavior expected in a near-TEM structure. Further sup-
port was provided through calculations of capacitance and
inductance over a range in the height parameter 4. These
results indicated the same close agreements and trends for
all the values of # considered.

The numerical convergence of the solution technique
was examined by modifying the unit cell subdivision in a
one-mesh-plane structure. Increasing, in different ways, the
number of subsections by a factor of about four led to
maximum changes of 0.14 percent in propagation velocity
and 3.6 percent in characteristic impedance, with only an
increase in the number of subsections along y significantly
affecting the impedance. These results, along with our
investigations of the two-mesh-plane structures, indicate
that acceptable accuracy in ¥ and coupled noise can be
obtained with a relatively coarse subdivision. For struc-
tures that are very close to TEM, however, a finer subdivi-
sion along y may be required to distinguish clearly their
values of Z, Cyq, Cyy, Ly, Lyy, and Ly, from those of their
TEM counterparts.

The structures considered here have zero thickness. The
approach, however, can be extended to handle thick con-
ductors by using rooftop current elements to represent the
current in the x — z and y — z planes.

APPENDIX
Expressions for F,,; and F, 4

Fop={ Fcb, . + Fd

Xasr Xp Toat X, Xp

+ FR8xa:‘rua+xﬁ} 8 :x’yBBZa,ZB
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where

1 . .
Fo= o Loxp (jk i/ 2) ~exp (= jeira/2)]
1

+ 2 [1 ——exp(— jkxTva/z)]
1 .
+— [1-exp(jk7,0/2)]
Tua’ x

1 .
FL - jzkx exp(.]kxTva/z)
1 .
+ PP [exp(]kxTva/z)_l]

Tva X

1 .
FR - T_—]ETC:eXp(— .]kxTua/z)

0 [exp (— jkTy0/2)—1]

ua'Tx

and 8, , is a modified form of the Kronecker delta, de-

fined as
5 = {1, u=v
“v 0, elsewhere.
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Computer Analysis of Dielectric Waveguides:
A Finite-Difference Method

EDGARD SCHWEIG, MEMBER; IEEE, AND WILLIAM B. BRIDGES, FELLOW, IEEE

Abstract —A method for computing the modes of dielectric guiding
structures based on finite differences is described. The numerical computa-
tion program is efficient and can be applied to a wide range of problems.
We report here solutions for circular and rectangular dielectric waveguides
and compare our solutions with those obtained by other methods. Limita-
tions in the commonly used approximate formulas developed by Marcatili
are discussed. ‘

I. INTRODUCTION

IELECTRIC WAVEGUIDES of high permittivity

(e, 210) have been proposed as practical waveguid-
ing structures for use in millimeter-wave integrated circuits
(MMIC) [1], [2]. The prospect that the dielectric material
could be a high-resistivity semiconductor raises the further
possibility that active devices could be fabricated directly
into the transmission line. Various practical devices for
millimeter-wave applications utilizing dielectric waveguides
also have been suggested: directional couplers [3], balanced
mixers [3], phase shifters [4], [5], scanning antennas [6],
channel-dropping filters [7]. The theoretical analysis of
.these devices has been based, in the case of rectangular
guides, on the analytical solutions proposed by Marcatili
[8], which can be expressed in simple closed forms. How-
ever, Marcatili’s quasi-plane-wave analysis- is based on
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The authors are with the California Institute of Technology, Depart-
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assumptions that are not met when the permittivity of the
guide is high compared to the outer medium.

Several authors have proposed methods for the study of
rectangular guides: Knox et al. [1] (modification of
Marcatili’s analysis), Goell [9] (expansion in circular
harmonics), Schlosser [10] and Solbach [11] (mode match-
ing), and Yeh [12], [13] (finite elements). With the excep-
tion of Solbach [11], they limit their analyses to relatively
small values of permittivity (¢, = 2.5) and they do not give
the field distributions calculated by their methods.

We have developed a numerical technique based on
finite differences (FD) for computing accurate dispersion
characteristics and field distribution for dielectric wave-
guides. This method is computationally more efficient than
finite elements (FE), thus allowing the use of finer meshes,
a desirable feature when accurate values of the fields are
required.

II. VARIATIONAL FORMULATION

Both the finite-elements method (FE) and the finite-dif-
ference method (FD) are based on a variational principle
[14], [19]. For one-dimensional problems, the two methods
are equivalent [15]. This equivalence is maintained in two-
dimensional problems that have simple rectangular
boundaries. The advantages of a variational approach are:
1) the method does not restrict the shape of the dielectric
interfaces so that complicated dielectric cross-sectional
profiles can be treated; 2) the procedure is numerically
stable; and 3) it permits the use of a graded mesh that can
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