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Propagation Characteristics of Signal
Lines in a Mesh-Plane Environment

BARRY J. RUBIN, MEMBER, IEEE

Abstract —This paper investigates the propagation characteristics of
signal lines sitnated between a pair of mesh reference planes in a homoge-
neous dielectric. These mesh reference planes, which form the heart of
high-performance mrdtichip modules, provide a transmission-line environ-

ment for the signals carried between integrated circuit chips.

A numericaf solution that employs a set of rooftop functions to represent

the current density is developed and used to find the propagation velocity

and characteristic impedance in mesh-plane strnctnres where the conduc-

tors have zero thicfmess and finite sheet resistance. The telegraphist’s

equations are showo to apply, and are used to find the capacitanceand
inductance matrices in coupled fine configurations. The near- and far-end

crosstafk are calcnfated when the coupled lines are on the same, and on

opposite, sides of a mesh plane. The presence of conductors which run in a
direction orthogonal to the signaf lines, whether as an array of crossing
signal lines or as part of the mesh planes, is shown to significantly affect
only the capacitive parameters. The influence of such orthogonal lines on
the propagation vehseity, characteristic impedance, and crosstafk are giyen,

and a detailed plot clearly indicates the circulating current flow in these

lines.

I. INTRODUCTION

T RANSMISSION LINES in the form of signal lines

embedded in a dielectric and sandwiched between

conductive reference planes are used in high-performance

computers to carry signals between integrated circuit chips.

A compact multichip carrier, or module, may be con-

structed by stacking such conductor-dielectric sandwiches,

where the reference planes and dielectric are perforated so

that signal lines can be connected to the chips at the

module’s top surface, to pins on the module’s surface, or to

signal lines located on other layers. A module that can hold

100 chips has been described in [1].

A section of such a module is shown in Fig. 1. Here, a

signal line situated between a pair of perforated (mesh)

reference planes is connected to another signal line through

a conductive element called a via. Generally, each signal

layer, which consists of lines running in only one direction,

is accompanied by a second layer having lines oriented in

the orthogonal direction. At least one pair of signal layers

is placed between mesh planes, though crosstalk and im-

pedance constraints may limit this number to two.

A search of the literature reveals no comprehensive

analysis of the above structure, though propagation along a

pair of wire meshes [2] and the effect of orthogonal, or

crossing, lines on signal lines situated between perfect

ground planes [3] have been investigated. In this paper, we
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Fig. 1. Section of multi-chip module showing reference planes, and
signaf lines interconnected through a via.

extend the analysis presented in [4], where guided wave

solutions are found for signal lines situated above one

periodically perforated ground plane to include a second

such plane and an array of orthogonal signal lines. The

propagation velocity, characteristic impedance, and signal-

line crosstalk are calculated, and numerical results pre-

sented. The effect of crossing signal lines is discussed in

detail.

II. SOLUTION TECHNIQUE

The structure considered is shown in Fig. 2, where a pair

of signal layers is situated between two mesh planes. The

conductors have zero thickness and finite sheet resistance

R. >0, and the supporting medium, which extends

throughout all space, has relative dielectric constant ~,. The

mesh planes, formed from intersecting conductive strips of

widths WX and WY, have penodicities dl and dzm in the x

and y directions, respectively, and are located at z = O and

z = h ~. The x- and y-signal lines have widths WY and WX,

respectively, and are situated at z = Iil and z = h ~. Con-

sistent with typical computer packages, the signal lines and

mesh planes are so aligned that their projections on the

plane z = O coincide. The x- and y-lines initially are as-

sumed to be arrays with respective periodicities of d2 and

dl (so the periodicities defining the entire structure are dz

and all), but through antisymmetric excitation of the x-sig-

nal lines, the periodicity in the y direction will be removed.

In the following, k, and q, are the wave number and the

wave impedance in the dielectric, the time dependency is

exp ( jut ) where o is the angular frequency, and x is the
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2. Transmission line structure having arrays of x- and y-signaf lines

situated between a pair of mesh reference planes.

direction of propagation. ‘The terms y-signal lines and

crossing lines will be used interchangeably.

A. Eigensolution for an Array of Signal Lines Above a Mesh

Plane

Reference [4] presents a solution for a structure having

only x-signal lines and one mesh plane. The current density

.I~, within a suitably defined unit cell that includes both

signal line and mesh plane, is approximated as a linear

combination of rooftop functions [4]–[6] multiplied by the

factor exp ( – jlXX), where kX is the propagation constant.

The transverse component of electric field El is expressed

in terms of the current using [6], and the electric field

boundary condition

is then integrated along appropriate line segments on the

conductor, generating tbe set of equations
,.

i ~xa[-%ap - %F.:P) + ~:1 ~,,-%,ap = o>
~=1

p=l,2,...,P

Fig. 3. Unit cell of mesh plane, indicating rooftop functions used to
approximate current density and line intervals over which boundary
conditions are applied.

conductors located at z = h ~ and z = h ~. In addition, we

employ rooftop functions that are not necessarily symmet-

rical along the direction of current flow. Tlie use of such

asymmetrical rooftop functions relaxes the dependencies

between the geometrical parameters WX,WY,dl, and dz that

would otherwise result, and allows the current density to be

represented with fewer current elements.

The rooftop functions are shown in Fig. 3, where their

use in representing the mesh current density of a structure

where dzm = d2 is indicated. AS in [41, the dots define the

centers of the roloft~p functions, being omitted at redun-

d@ points along the unit cell boundary, and the heavy

lines define some line segments over which (1) is integrated

to obt~n (2). The use of asymmetrical rooftop functions,

however, results in a subdivision of the unit cell which is

not a unifprm rectangular grid. The dimensions of the

rectangles are fixed by the parameters ~Ua, ~Ua, and T7.,

whic4 define RX.(X – x., y – Y.), the x-directed rooftop

function centereci at (x., y., z.), and by the Parameters T,.,

arid Tga,Tfa?. which define Ry.(x – xp+a, Y – Yp+J, the

y-directed rooftop function centered at (XP+., YII+., ZP+ .).

The resulting Z coefficients of ‘(2) associated with the

structure of Fig. 2 are then

.,
where IX., Iya are complex current coefficients, the Z + ~–(y. – yp)–k..mlz. – z/d
elements are infinite series, and P and Q are,’ respectively; :1 1}
the number of rooftop current elements required to ap-

Zxyafl = $ :~ S(k.n> Tup,!proximate 4X and J,Y. The detemninantal equation associ- ~ofl)
ated with (2) is solved, yielding kX; kX is then substituted ~n, m

back into (2) to give lX., lYa ahd thus the current deniit~. kX&m
. ——.9i?ynma

{[
exp ~ ~(xp+. –xp),,

k
B. Extension of Single Mesh-Plane Analysis znm

We find the solution associated with the structure of Fig. 277m

2 by including in the analysis’ the current density on the
+ ~~(YP+a– Y@)–kznmlzP+a– ’81 11
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,,+3 = * z m%‘f~ %)z
~n, m

kX~kYM
.—

{[
-(xa - X,+8)

k ‘Xn’’’”exp J dl
znrn

+ 27rm
@“a- .J%+/3)-~znml%- zP+/31 1)

z ~ x ~(kym,~f~o-,p)JIjklfl= — zk
~n, m

& – kz
ym

([

2~n

k ‘Ynrn”exp J
znm

-# P+a-x P+@)

+ 27rm
&YP+a - w+ F)-kznmlzP+. - zP+Pl 1}

(3)

where

kX.=kX+~ ky.=~
1 2

‘..m= ( Y~)l’2k: – k:n – k2

s(k, ~u, ,U) = ‘Xp(- jk’L/2)-exp(jk’L/2)
– jk

and .%’X.ma and ~Y~~a are the Fourier series coefficients of

RX.(X, y) and RYa(x, y), respectively. Though resistive

structures can be handled, in this paper we present exam-

ples only for conductors having R.= O; the F elements of

(2), therefore, are not needed, but for reference are in-

cluded in the Appendix.

C. Application of Symmetry

The reference planes in high-performance modules are

generally interconnected directly through vias, or indirectly

through paths which may include vias, power supply pins,

decoupling capacitors, and logic circuits. These elements

serve to short the mesh planes together, precluding the

possibility of a time-varying potential difference between

the mesh planes and thus preventing the existence of a

mode corresponding to this potential difference. On the

other hand, such elements greatly complicate the analysis.

To short the mesh planes but not overly complicate the

problem, we force the x-directed current 1 in adjacent

x-signal lines to flow in opposite directions so by symmetry

the tangential electric field is zero along the x – z planes

midway between these lines. The unit cell, as shown in Fig.

4(a), includes two x-signal lines and has periodicity 2d2 in

the y direction. (This requires that d2 be replaced by 2d2 in

(3) and its auxiliary equations.) Since the tangential electric

field is zero along the planes indicated in the figure,

perfectly conducting walls may be placed there without

disturbing the field. A reduced unit cell having periodicity

d2 in the y direction may then be defined, as shown in Fig.

4(b). In fact, the structure no longer needs to be considered

as periodic in the y direction since the conducting walls

totally isolate the structure in this direction. Also observe

2,,. Tangential El..,,,. Field

X.Si,nalLine, //\

iy~~

——_ ___ ___

7:
Mesh Planes

~-ti~~~h’

;———_ —__ ___ ___

z

L v

kd,-+-d,+

(a) Unit Cell

(b)

Perfectly C..du.,,ng
walls

/\

W
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t
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—
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————

dz

Fig. 4. Transmission line structure where adjacent x-signal lines carry
current in opposite directions. (a) Section of structure showing unit cell
and planes where the tangential electric field is zero. (b) Reduced unit
cell.

Fig. 5. Isometric view of the reduced unit cell (Fig. 4(b)) when
d2=3d2m.

that only one propagation constant is associated with this

structure. Had the mesh planes not been shorted, the unit

cell would have consisted of three nontouching conductors

(an x-signal line and two mesh planes) so that the structure

would have been a coupled transmission line possessing

two distinct propagation constants.

Although the electric walls are necessary to short the

reference planes, they do not actually exist in the module.

To prevent these walls from significantly affecting the

propagation characteristics, the distance between each x-

signal line and the nearest wall must be large in compari-

son to the distance between the x-signal line and the

nearest mesh plane. For typical structures, this may be

accomplished by requiring the reduced unit cell width d2 to

be several times the periodicity of the mesh in the y

direction, d2~.

Fig. 5 gives an isometric view of the unit cell (subse-

quently, the term unit cell will be taken to mean reduced

unit cell) when d2 = ii2m. The y-signal line shown in-

cluded in the figure may or may not actually be present. A
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Fig. 6. Subdivision of mesh plane suitable for unit cell of Fig. 5.

particular subdivision of this unit cell suitable for the

examples to be presented is shown in Fig. 6. The unit cell is

divided along y into uniform segments of length ~Y; along x

the unit cell is divided into two equal segments of length 7X

and a third segment of length dl – WX. Though shown

explicitly only for the mesh planes, subdivisions may be

obtained for the x- and y-signal lines from their projection

onto the grid shown. The dots indicate the centers of the

rooftop functions employed in the representation of the

current density.

III. CHARACTERISTIC IMPEDANCE

A characteristic impedance 20 can be defined for t~s

structure. Since the current and voltage are the variables

generally encountered in the analysis of computer circuits,

it is convenient to define 20 as

20= V/I (4)

where V is the voltage difference between the x-signal line

and a mesh plane (generally the mesh plane at z = O), and 1

is the total x-directed current in the x-signal line, As

described in [4], V can be obtained by integrating the z

component of the electric field between the signal line and

a mesh plane, though this voltage depends on the integra-

tion path because the wave is non-TEM. In typical mesh-

plane structures, however, the wave is nearly TEM and the

ambiguity in voltage so small that the utility of V is not

impaired. Modifying the analysis of [4] to include the

L -iWl- TJrJ I
5 _.Q__ ‘–L.

;d,.--hadad _f——

+- 4d2m

(a)

525

(b)

Fig. 7. Configurations used in coupling analysis. (a) Unit cell for side-
by-side coupling. (b) Unit cell for through-mesh coupling.

y-signal line and the second mesh plane, we find

exp(– jk,.~lz.l)–exp(– jk,nnlza – hl)

k
Znm

.

Q

+ E Iya E ‘ynma

ci=l n,m

exp(– jkznmlzp+.l)–exp(– ~kz.~lz~+~ – Ll)

k
znm

where

.nma= kXn9?Xnn,a,G
{[

=(xa-x)+*(Ya-Y)exp j ~1 1}
Ynma= kymf%’ynn,aG

{[ 1)=%tp+a-x)+a(Yp+a-Y) ..exp j ~1

8U,. is a modifiecl form of the Kronecker delta, defined in

the Appendix, and qU,” is a function having the triangle

dependency of the x-directed rooftop function (Fig. 3).

When adjacent xsignal lines are oppositely excited, (4) and

(5) are modified to reflect the new unit cell.

IV. SIGNAL-LINE COUPLING AND CROSSTALK

The crosstalk lbetween two adjacent signal lines can be

obtained by modlif ying the unit cell of Fig. 4(b) so that it

contains two x-signal lines, finding the associated capaci-

tance and inductance matrices, and then substituting the

appropriate matrix elements into well-known formulas for

the near- and far-end coupled noise. Since the reference

planes are meshes, not solid planes, coupling will exist

between lines located on the same, and on opposite, sides

of a mesh plane Subsequently, two unit cells need to be

defined.
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Fig. 7(a) shows a unit cell suitable for finding the

crosstalk between horizontally adjacent signal lines (side-

by-side case). A second unit cell, suitable for finding the

crosstalk between signal lines separated by a mesh plane

(through-mesh case) is shown in Fig. 7(b). In each cell, the

x-signal lines (labeled 1 and 2) are a distance 3dzm /2 from

the nearest electric wall. Crossing lines will be considered

only in the side-by-side structure.

The total x-directed currents in the two coupled x-signal

lines II and Iz, and the potential differences between these

lines and the nearest mesh planes VI and Vz (found through

integration of the z-directed electric field), are calculated

for each propagating mode associated with the structure.

As opposed to a TEM structure, where only one propaga-

tion constant (and hence only one mode) may exist, a mesh

structure having two signal lines supports two distinct

propagation constants (and hence two modes). The propor-

tion of each mode present depends upon the boundary

conditions (voltages and terminations) imposed at the ends

of the signal lines. The parameters 11, Iz, VI, and Vz are

then substituted into the telegraphist’s equations [7] (which

we assume and later verify to hold for our structure), which

in matfix form and expressed through phasors are
,,

– jk~V’ = – juLI’ (6a)

– jk~I’ = – jtiCV’ (6b)

where

‘=[:1‘=[21
and C and L are the per unit length capacitance and

induct ante matrices

[

Cll – C12
c= _c

21 c 22 1

[

Lll L12
1L= . . .

(7a)

(7b)
L~21 ~22 J

.,

The superscript i, which may be either 1 or 2, denotes the

mode. Since two modes exist, (6a) represents a set of four

equations in the four unknowns Lll, Llz, L21, and L22;

(6b) represents a set of four equations in the four un-
knowns Cll, Clz, C21, and C22. Hence, both C and L can

be obtained from (6).

From [8] and [9], the saturated near-end noise V~ and

far-end noise V~, in ideal transmission lines with pulse

excitation, may be expressed as

VN=+(KC+KL)VS (8a)

V~=+l{m(Kc–K~)V~/r (8b)

where V~ is the voltage amplitude on the active line, 1 is the

coupled length, ~ is the input pulse risetime, and Kc and

K~ are the capacitive and inductive coupling coefficients,

which may be expressed as

(9a)

(9b)

Equations (8a) and (8b) apply to coupled lines which are

terminated in impedances ~~, i =1, 2. Viewing the

voltage waveform in the structure as a superposition of two

waves having distinct propagation velocities and which

repeatedly reflect (to a small degree) off the ends of the

lines [7], these equations are seen to be approximations-in

[9], such equations are stated as valid when the lines are

loosely coupled and 1 is nonexcessive. Actually, (8b) is

valid only when the difference in propagation delay along 1

of the two modes is less than ~. A further restraint on (8),

when applied to the pefiodic structure considered here, is

that the input pulse not distort as it propagates—this

requires l/~ to be small compared to the structure’s cutoff

frequency. For typical computer modules, all the above-

mentioned constraints are satisfied, and (8) gives reason-

ably accurate results.

V. NUMERICAL RESULTS

A. Calculation of Propagation Characteristics for Two -

Mesh - Plane Structures

A number of examples are now considered. In each, the

parameters WX and WY are chosen to allow a unit cell

subdivision as shown in Fig. 6, though the number of

intervals of length ~Yalong they direction may differ from

that shown. The infinite series in (3) and (5) are truncated

after In I = N and Im I = M, where N and M are the smallest

integers satisfying

“max(%%)
2d2

M>—
ry

(10)

and both 7X and ~Yare intervals as depicted in Fig. 6. This

choice for N and M guarantees that at least one period of

the highest Fourier series mode of any rooftop function

will fit into each rectangle shown in Fig. 6.

As in [4], the propagation constant kX, which appears

implicitly in the determinantal equation (2), is obtained

through a Newton search. We define the normalized propa-

gation velocity O as the propagation velocity divided by the

speed of light in the dielectric. At low frequency (kCdl <<1)

in perfectly conducting structures, O may be simply ex-

pressed as

;=kC/kX.

In the following examples, R,= O,c, = 10 (consistent

with alumina ceramic dielectrics), k, = 0.006 mm-1, and

the structures are such that hl = h, h2 = 2h, and hq = 3h.

Since R,= O and k.dl will be sufficiently small, kX, 0, and

20 will be real, The characteristic impedance and voltages

in all the examples are calculated at the point along the

line bisecting the x-signal line, midway between the y-

directed conducting strips that constitute the mesh planes.

Such a choice has been found to yield the most accurate

values of the capacitance and inductance matrices. The

first example deals with the effect of the electric walls on

the propagation characteristics.



RUBIN: PROPAGATION CHARACTEIUSTICS OF SIGNAL LINES 527

‘“”o~ 52
0995 –

<> 0990

0985 -

\
\

– 50

\

\

./”—”O

(

\

- 40

\

g

\

N“

- 46
‘m.

\

‘\.e - 44
~-

●
-0 j

Fig. 8. Normalized propagation velocity (0) and characteristic imped-
ance ( ZO) against d2 /dPm for the structure of Fig. 2 having no crossing
lines (k, = 0.006 mm- , c,=1O, R,= O, dl= d2m=0.5 mm, h = 0.2
mm, WX= WY= 0,125 mm, 7X= 0.0625 mm, r, = ().()3125 mm).

‘“”~sa

[;

%

099 52
ZOT

/.
// .

---

/

—- 50
098

<. ~ @o

N

097

46

098

44

/ “

—---,
/~H

095 42
015 020 025

h [mm)

T Crowng L,nes Present

0,4 L_~32
h (mm)

t Crdng L,”,, P,,,.”,

Fig. 10. Normalized propagation velocity (0) and characteristic imped-
ance (2.) against h for the structure of Fig. 5 (k, = 0.006 mm – 1,
c, =10, R, = O, dl ==dzm = 0.5 mm, dz =1.5 mm, WX= WY= 0.2 mm,
7X= 0.1 mm, T} = 0.05 mm).

.-zig”al t.,,?. /

Fig. 9. Normalized propagation velocity (0) and characteristic imped- Fig. 11. Current deusity (A/mm) in y-signal line of half the unit cell of
ante (2.) against h for the structure of Fig. 5 (k, = 0.006 mm– 1, Fig. 5 whenl = 0.5,4 (k, = 0.006 mm-l, c, =10, R, = O, dl = dzm = 0.5
c, =10, R,= O, dl = d2m = 0.5 mm, d2 = 1.5 mm, WX= WY= 0.125 mm, mm, dz =1.5 mm, ,h= 0.15 mm, WX= WY= 0.2 mm, TX= 0.1 mm, T, =
7X= 0.0625 mm, Ty = 0.03125 mm). 0.05 mm).

As discussed earlier, d2 /dz~ must be large enough to

prevent the electric walls in the unit cell (Fig. 4(b)) from

significantly affecting the propagation characteristics. The

variation of Oand 20 with dz /d2~ is presented ifi Fig. 8 for

the structure of Fig. 2 (with no crossing lines) when WX= WY

= 0.125 mm, dl = dz~ = 0.5 mm, h = 0.2 mm, 7X= 0.0625

mm, and ~Y= 0.03125 mm (remember that R, = O, c,= 10,

and hl = h, hz = 2h, h~ = 3h). The unit cell (Fig. 5) and its

subdivision (Fig. 6), though valid for dz /dz~ = 3, are

appropriately modified for other values of d2/dz~. We

observe that O monotonically decreases and 20 monotoni-

cally increases with dz /dz~, but both saturate around

d2 /d2~ = 3. Thus, for structures having h about 0.2 mm,

we can expect dz /dzm = 3 to be sufficient for reasonable

accuracy.

The impedance and normalized propagation velocity are

plotted against h in Fig. 9 for the structure of Fig, 5 when

d2/dz~ is fixed at 3, but with the other geometrical
parameters as given above. We observe that O and 20

increase with h over the given range, and both decrease by

about 3 percent when crossing lines (y-signal lines) are

introduced. These y-signal lines, spaced at intervals of dl,

form a periodic array of capacitive discontinuities and thus

increase the capacitance of the x-signal line, lowering the

impedance and slowing the wave. Although O increases

with h, apparently due to the increasing effect of the

conducting walls, when h approaches zero one would ex-

pect the wave to approach TEM and O to increase to unity.

Thus, the sensitivity of O to h over the range h = O to

h = 0.15 mm may not be intuitively clear.

Fig. 10 gives t’ and 20 against h for the same structure,

except WX= WY= 0.2 mm, and the subdivision parameters

are 7X= 0.1 mm and ~Y= 0.05 mm, Consistent with wider

lines, 20 is smaller, i) is greater (the wave is more nearly

TEM), and the effect of crossing lines on both parameters

is greater. The w-rent density in the y-signal line when

ii= 0.15 mm and the x-signal line carries a current of 0.5A

is shown for half the unit cell in Fig. 11. As expected, the

current flows in loops to cancel the magnetic field within

the line that is produced by the mesh planes and x-signal

line. For the half unit cell shown, the current flows in the

clockwise direction, but by symmetry flows counterclock-

wise in the othelr half. The current flow in a mesh plane,

though for a simpler structure, is given in [4].
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TABLE I
COMPARISONOF CAPACITIVEAND INDUCTIVE PARAMETERSIN

COUPLING STRUCTURES
k,= 0.006 mm-l, f,=lO, R,= O, dl = d2m = 0.5 mm, h = 0.2 mm,

Wx = Wr = 0.125 mm, T, = 0.0625 mm, T,,= 0.03125 mm

Coupllng GOnf,gura,,on c11 C12 L? I L12
(Pflnml)

L21 L22
(klflnlnl) lnhimm) (nhmmnl (nhirmn) (nhinm)

S,de-by S,de. O 2194 001837 001837 02194 05101 004271 004271 05101

S,de-by-S,de 02161 001338 001338 02161 05344 004189 004189 05344

S,de by S,det 02307 000899 000899 02307 05337 004212 004212 05337

Through. Mesh+ 02183 000700 000700 02076 05095 00,7,8 00,7,8 0535,

Through.M.sh 0 2?72 000333 000328 02082 05289 001721 001697 05554

. TEM S,,..! .,,

t Cro.mg L,”., Present

In Section IV, the telegraphist’s equations were assumed

to apply to the structures of Fig. 7(a) and (b) and were

used to obtain the C and L matrices. We now show that

this approach is valid by finding the C and L matrices

associated with structures having no y-directed conductors,

and then comparing these matrices to those obtained

through (6) for the structures having y-directed conductors.

The structures of Fig. 7(a) and (b), having no y-signal lines

or y-directed conductors in the reference planes (so the

meshes become arrays of x-directed conductors), support

purely TEM waves, so that the associated capacitance

matrices may be obtained using [10]. The inductance

matrices, since the structures are TEM, can be obtained by

inverting the C matrices and dividing the resulting matrix

elements by the square of the velocity of light in the

dielectric.

Table I gives the elements of the L and c matrices

calculated for the structures of Fig. 7(a) and (b) as shown

and for their TEM counterparts, when h = 0.2 mm, w. = WY

= 0.125 mm, and dl = dz~ = 0.5 mm. We expect the pres-

ence of y-directed conductors to substantially reduce the

mutual capacitances Cl~ and C21, but to affect only slightly

the other parameters. We now compare each parameter

calculated for the TEM structure with the same parameter

calculated for the mesh structure.

For the side-by-side case, we observe that the mutual

inductances Llz and Lzl agree to within 2,0 percent; the

self inductances Lll and L21 agree to within 4,8 percent;

Cl~ and C21 are substantially less, and the self capacitances

Cll and Czz slightly less for the mesh structure. Though the

changes in the self terms are in directions opposite to that

expected (when y-conductors are added to a TEM struc-
ture, Cll and Czz should increase, while Lll and Lzz should

decrease), these slight discrepancies fall within the numeri-

cal uncertainty associated with the expansion and testing

procedures employed—at the low frequencies considered

here, the rooftop current expansion results in an essentially

stepwise-constant charge distribution, and the line integral

testing (of the electric field) actually results in a point

testing of the voltage on the conductors. As shown in [11],

when constant charge patches and point testing are used in

finding the capacitance of a rectangular parallel-plate

capacitor, the values calculated (against the number of

subsections) approach the exact value from below. It is

expected, then, considering the relatively coarse subdivi-
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Fig. 12. Signal-line crosstalk against h. (a) Normalized saturated near-
end noise. (b) Normalized far-end noise.

sion of the mesh structure (~, = 0.0625 mm, ~- = 0.03125

mm) that the self capacitances be less and the self induc-

tances (which vary inversely with the self capacitances) be

greater. This behavior is further demonstrated in the sec-

tion on numerical convergence. The mutual terms, which

depend on the current (or charge) at one conductor and the

field at another, me less affected by the particular subdivi-

sion.

In the third row of Table I, crossing lines are considered

in the side-by-side structure. These lines, acting as capaci-

tive discontinuities, increase Cll and CZ1, decrease C12 and

C21, but insignificantly change the inductances. The entries

for the through-mesh case show excellent agreement (be-

tween the TEM and mesh structures) of the mutual induc-

tances; the mutual capacitances are substantially less in the

mesh structure, and the self terms are only slightly af-

fected, though the changes again are in a direction other

than expected. We observe that C12 # C21 and Llz # Lzl in

the mesh structure, in apparent violation of reciprocity.

But the structure is not TEM so that the voltages used in

(6) are somewhat ambiguous, being dependent on the

integration path; therefore, reciprocity does not apply to

these parameters. The exceptionally close agreement be-

tween Llz and Lzl, and between C12 and Czl, however,

further supports the application of the telegraphist’s equa-

tions. For the side-by-side case, the symmetry of the struc-

ture forces Llz = L21, and Clz = C21, Cll = Czz, and Lll =

Lzz. Though Table I presents results for structures having

h = 0.2 mm, calculations for h = 0.15 mm and h = 0.25 mm

show the same excellent agreement and observed trends

between the calculated parameters for the TEM and mesh

structures.

The parameters of Table I, calculated for h = 0.15, 0.20,

and 0.25 mm, are substituted into (8) and (9) to obtain the

normalized saturated near-end noise ( V~/ V~) and the nor-

malized far-end noise [ ~VF/(lV~ )], for the side-by-side and

through-mesh structures. Line 2 is the active line and the

noise on line 1 will be determined (see Fig. 7). As shown in

Fig. 12(a), the saturated near-end noise is greater for the
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TABLE II
CONVERGENCEOF PROPAGATIONVELOCITY, CHARACTERMTIC
IMPEDANCE,CAPACITANCE,AND INDUCTANCEAGAINST THE

NUMBER OF SUBDIVISIONSFORA ONE-MESH-PLANE STRUCTURE
(No Y-SIGNAL LINES)

k, =0.006 mm-l, c,=1O, R, =0, d1=d2m = 0.5 mm, d2=l.5 mm,
h = 0.2 mm, w.= w, = 0.2 mm.

case %1 5X2 % t zo [Q) c (pflnml) L (nh(rnm)

1 2 1 30 098829 4204 02537 04484

2 2 1 60 098891 41 11 02593 04382

3 2 1 90 098913 4079 02613 04347

4 2 1 720 098918 4058 02627 04322

5 4 3 30 098907 41 97 02539 I 04473

6 4 3 60 098971 4704 02595 04371

side-by-side case, even when crossing lines are introduced.

The far-end noise (which is negative since K~ > Kc), as

shown in Fig. 12(b), in both structures agree to within 20

percent. Once y-signal lines are introduced into the side-

by-side structure, however, the reduction in C12 (and the

corresponding decrease in coupling coefficient Kc) causes

the far-end noise to substantially increase, well beyond that

of either structure having no crossing lines. Though the

variation with h of the near-end noise is intuitively obvious,

the variation of the far-end noise, which depends on the
difference between Kc and K~, is more difficult to predict.

This is made evident by the curves in Fig. 12(b). Though

not shown, the corresponding TEM structures have

noticeably larger near-end noises (since they have larger

values of Kc), but no far-end noise (since Kc = K~).

B. Numerical Convergence

We now investigate the convergence of the solution

technique by choosing a convenient structure, varying the

numbers of subsections and modes, and observing the

changes in O and 20. The structure chosen must be simple

enough to allow at least a four times increase in the

number of subsections without leading to excessive compu-

tational cost—a suitable structure is a modified version of

that considered in Fig, 10, having only one mesh plane (at
z = 0) and no y-signal lines. The corresponding unit cell

subdivision (Fig, 6) is modified so that & equal intervals

subdivide the x region of length WX,S,2 equal intervals

subdivide the x region of length dl – w,, and SY equal

intervals subdivide the y region of length dz. The original

subdivision, then, corresponds to SXI = 2, SX2=1, and SY=

30. This new subdivision scheme requires (10), the expres-

sions defining N and M, to be modified as follows:

i14>2sy. (11)

Table II gives O and 20 for a number of different

subdivisions. We observe, from cases 1 through 4, that

both O and 20 vary monotonically and converge as SY

increases. From cases 1 through 6, we observe that the

number of subdivisions along both x and y influence 0, but

only the increase of subdivisions along y yields a signifi-

cant decrease in 20. Also shown in the table are the

capacitance and inductance (represented by C and L),

calculated from (6), We observe that the capacitance con-

verges from belclw and the inductance converges from

above as earlier speculated. The corresponding TEM struc-

ture (no y-directed conductors) has C = 0.2578 pf/mm and

L = 0.4331 nh/mm. Although satisfactory for all the other

cases, M given by (11) yields incorrect values for 0, 20, and

the current distribution in case 4. Doubling M, however,

gives the values listed in the table. From the table, the

maximum changes in O and 20 are 0.14 and 3.6 percent,

respectively. Cases 1 and 6 were repeated at high frequency

(k, =1.0 mm-l), and showed comparable rates of conver-

gence.

Next, we truncated the infinite series in (3) and (5) at

different points. ‘We observed that doubling N in cases 1

and 5 produced changes in 6 and 20 of less than 0.01 and

0.04 percent, respectively. Doubling M in case 1 decreases

6 by 0.02 percent and decreases 20 by 0.72 percent, while

doubling M in case 2 results in less than half the above

changes-thus, once a fine enough subdivision along y is

employed, using more modes than given by(11) yields only

minimal improvements in accuracy.

To improve the convergence, a more non-uniform subdi-

vision of the unit cell, one that employs narrow strips along

the conductor ed,ges to better represent current crowding,

would undoubtedly give faster convergence (with respect to

the number of subsections). An efficient algorithm for

calculating the Z elements in (3), however, takes advantage

of the occurrence of elements having repeated values.

Though the total number of Z elements would be reduced,

such a non-uniform subdivision might actually increase the

number of elements having different values and, therefore,

increase the computational expense.

VI. CONCLUSION

The propagation characteristics have been calculated for

transmission line structures consisting of signal lines

situated between a pair of mesh reference planes through

the extension of a previous analysis involving a rooftop

current approximation. The conductors have zero thick-

ness, finite sheet resistance, and the dielectric is homoge-

neous.

A number of examples were considered for perfectly

conducting structures at low frequency (k, dl << 1). The

results showed that the propagation velocity is just a few

percent less than the speed of light in the dielectric, and
that an array of crossing, orthogonal lines causes the

propagation velocity and characteristic impedance to de-

crease (both by 3–4 percent for the structures considered).

The crosstalk between adjacent signal lines was calculated,

showing that the near-end coupled noise is greater for

signal lines sitting side-by-side than for signal lines verti-

cally adjacent but separated by a mesh plane (through-mesh

case). The far-enld noises were shown to be comparable,

though the presence of crossing lines subsequently causes

the side-by-side far-end noise to approximately double.

The crosstalk, of course, is strongly dependent on the

geometrical parameters defining the structure. The pres-

ence of y-directed conductors, whether as part of the mesh
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planes or as crossing lines, significantly decreases the mut-

ual capacitance between coupled lines, but has a negligible

effect on the mutual inductances. A plot of the current

distribution on a y-signal line showed the expected loop

current flow necessary to cancel the magnetic field pro-

duced by the other conductors, giving additional support

to the solution technique.

In calculating the L and C matrices, the telegraphist’s

equations, which hold true exactly for TEM transmission

lines, were assumed to hold in the mesh-plane environ-

ment. This assumption was verified through a comparison

of parameters calculated for mesh structures and for mesh

structures devoid of y-directed conductors (so they become

TEM structures). Excellent agreement (within 5 percent)

was observed in the elements of the inductance matrix, the

parameters least sensitive to the presence of y-directed

conductors. The mutual capacitances in the mesh structure

were substantially less, as expected. Though the changes in

the self terms due to y-directed conductors in the mesh

planes were small, they were in the direction opposite to

that expected. This discrepancy, however, was attributed to

the numerical error associated with the relatively coarse

subdivision of the unit cell. The application of the tele-

graphist’s equations were further supported through the

close agreement between Llz and L21, and between C12 and

C21; though calculated in the through-mesh structure as

independent parameters, they exhibited the near reciprocal

behavior expected in a near-TEM structure. Further sup-

port was provided through calculations of capacitance and

inductance over a range in the height parameter h. These

results indicated the same close agreements and trends for

all the values of h considered.

The numerical convergence of the solution technique

was examined by modifying the unit cell subdivision in a

one-mesh-plane structure. Increasing, in different ways, the

number of subsections by a factor of about four led to

maximum changes of 0.14 percent in propagation velocity

and 3.6 percent in characteristic impedance, with only an

increase in the number of subsections along y significantly

affecting the impedance. These results, along with our

investigations of the two-mesh-plane structures, indicate

that acceptable accuracy in O and coupled noise can be

obtained with a relatively coarse subdivision. For struc-

tures that are very close to TEM, however, a finer subdivi-

sion along y may be required to distinguish clearly their

values of 20, Cll, C2Z, Lll, Lzz, and L12 from those of their

TEM counterparts.

The structures considered here have zero thickness. The

approach, however, can be extended to handle thick con-

ductors by using rooftop current elements to represent the

current in the x – z and y – z planes.

APPENDIX

Expressions for FXaP and FYafl

Fx.fl = {Fc&p + F~~~..+..,.,

+ F~8Xa,,ucfXP }l>Y}z.>.B

+ ~ [1-exp(jk,,rti~/2)]
~UUk:

F~=- 1 exp ( jk.~../2)J2kX

+1— [exp (jkx70.,\2) –1]
~Uak:

F~= ?
– j2kX exp ( – jk.z,t/2)

+ L [exp( - jkx7u./2)-l]
q.k:

and 8U ~ is a modified form of the Kronecker delta, de-

fined as

(8U,” = :’ iU= l.)
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Computer Analysis of Dielectric Waveguides:
A Finite-Difference M[ethod

EDGARD SCHWEIG, hlH?f13ER,IEEE, AND WILLIAM B. BRIDGES, FELLOW, IEEE

.&tract —A method for computing the modes of diel~tric guiding

structures based on finite differences is described. The numerrcaf computa-

tion program is efficient and can be applied to a wide range of problems.
We report here solutions for circular and rectangular dielectric waveguides

and compare our solutions with those obtained by other methods. Limita-

tions in the commonly used approximate formulas developed by Marcatili

are discussed.

I. INTRODUCTION

D IELECTRIC WAVEGUIDES of high perrnittivity

(c; > 10) have been proposed as practical waveguid-

ing structures for use in millimeter-wave integrated circuits

(MMIC) [1], [2]. The prospect that the dielectric material

could be a hi@t-resistivity semiconductor raises the further

possibility that active devices could be fabricated directly

into the transmission line. Various practical devices for

millimeter-wave applications utilizing dielectric waveguides

also have been suggested: directional couplers [3], balanced

mixers [3], phase shifters [4], [5], scanning antennas [6],

channel-dropping filters [7]. The theoretical analysis of

these devices has been based, in the case of rectangular

guides, on the analytical solutions proposed by Marcatili

[8], which can be expressed in simple closed forms. How-

ever, Mamatili’s quasi-plane-wave analysis is based on

Mamrscriut received Jnlv 7, 1983; reyised December 15, 1983. This
work was s~pported by tie Office of Naval Rese&ch under Contract
NOO014-79-C-O-0839.

The authors are with the California Institute of Technology, Depart-
ment of Electncaf Engineering, Pasadena, CA 91125.

assumptions that are not met when the permittivity of the

guide is high compared to the outer medium.

Several authors have proposed methods for the study of

rectangular guides: Knox et al. [1] (modification of

Marcatili’s analysis), Goell [9] (expansion in circular

harmonics), Schlctsser [10] and Solbach [11] (mode match-

ing), and Yeh [1;!], [13] (finite elements), With the excep-

tion of Solbach [II], they limit their analyses to relatively

sm~l values of ptm&tivity (c; = 2.5) and they do not give

the field distributions calculated by their methods.

We have developed a numerical technique based on

finite differences (FD) for computing accurate dispersion

characteristics and field distribution for dielectric wave-

guides. This method is computationally more efficient than

finite elements (FE), thus allowing the use of finer meshes,

a desirable feature when accurate values of the fields are

required.

II. VARIATIONAL FOItMULATION

Both the finite-elements method (FE) and the finite-dif-

ference method (lFD) are based on a variational principle

[14], [19]. For one-dimensional problems, the two methods

are equivalent [15 ]. This equivalence is dmintained in two-

dimensional problems that have simple rectangular

boundaries. The advantages of a variational approach are:

1) the method does not restrict the shape of the dielectric

interfaces so that complicated dielectric cross-sectional
profiles can be treated; 2) the procedure is numerically

stable; and 3) it permits the use of a graded mesh that can
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